Non-helical Models Of DNA Structure
   HOME

TheInfoList



OR:

In addition to the variety of verified DNA structures, there have been a range of proposed DNA models that have either been disproven, or lack evidence. Some of these structures were proposed during the 1950s before the structure of the double helix was solved, most famously by Linus Pauling. Non-helical or "side-by-side" models of DNA were proposed in the 1970s to address what appeared at the time to be problems with the topology of circular DNA chromosomes during replication (subsequently resolved via the discovery of enzymes that modify DNA topology). These were also rejected due to accumulating experimental evidence from
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
, solution NMR, and
atomic force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
(of both DNA alone, and bound to
DNA-binding protein DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for DNA#Base pairing, single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove ...
s). Although localised or transient non-duplex helical structures exist, non-helical models are not currently accepted by the mainstream scientific community. Finally, there exists a persistent set of contemporary fringe theories proposing a range of unsupported models.


Prior to Watson–Crick structure

The DNA double helix was discovered in 1953 (with further details in 1954) based on
X-ray diffraction X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
images of DNA as well as
base-pairing A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
chemical and biochemical information. Prior to this, X-ray data being gathered in the 1950s indicated that DNA formed some sort of helix, but it had not yet been discovered what the exact structure of that helix was. There were therefore several proposed structures that were later overturned by the data supporting a DNA duplex. The most famous of these early models was by
Linus Pauling Linus Carl Pauling (; February 28, 1901August 19, 1994) was an American chemist, biochemist, chemical engineer, peace activist, author, and educator. He published more than 1,200 papers and books, of which about 850 dealt with scientific top ...
and Roberyt Corey in 1953 in which they proposed a triple helix with the phosphate backbone on the inside, and the nucleotide bases pointing outwards. A broadly similar, but detailed structure was also proposed by Bruce Fraser that same year. However, Watson and Crick soon identified several problems with these models: * Negatively charged phosphates near the axis repel each other, leaving the question of how the three-chain structure stays together. * In a triple-helix model (specifically Pauling and Corey's model), some of the van der Waals distances appear to be too small. The initial double helix model discovered, now termed B-form DNA is by far the most common conformation in cells. Two additional rarer helical conformations that also naturally occur were identified in the 1970s: A-form DNA, and Z-form DNA.


Non-helical structure proposals


Before the discovery of topoisomerases

Even once the DNA duplex structure was solved, it was initially an open question whether additional DNA structures were needed to explain its overall topology. there were initially questions about how it might affect DNA replication. In 1963,
autoradiograph An autoradiograph is an image on an X-ray film or nuclear emulsion produced by the pattern of decay emissions (e.g., beta particles or gamma rays) from a distribution of a radioactive substance. Alternatively, the autoradiograph is also available ...
s of the ''E. coli'' chromosome demonstrated that it was a single circular molecule that is replicated at a pair of
replication fork In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
s at which both new DNA strands are being synthesized. The two daughter chromosomes after replication would therefore be topologically linked. The separation of the two linked daughter DNA strands during replication either required DNA to have a net-zero helical twist, or for the strands to be cut, crossed, and rejoined. It was this apparent contradictions that early non-helical models attempted to address until the discovery of
topoisomerases DNA topoisomerases (or topoisomerases) are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues i ...
in 1970 resolved the problem. In the 1960s and 1970s, a number of structures were hypothesised that would give a net-zero helical twist over the length of the DNA, either by being fully straight throughout or by alternating right-handed and left-handed helical twists. For example, in 1969, a linear tetramer structure was hypothesised, and in 1976, a structure with alternating sections of right-handed and left-handed helix was independently proposed by two different groups. The alternating twists model was initially presented with the helicity changing every half turn, but later long stretches of each helical direction were later proposed. However, these models suffered from a lack of experimental support. Under torsional stress, a
Z-DNA Z-DNA is one of the many possible double helical structures of DNA. It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form. Z-DNA is thought ...
structure can form with opposite twist to B-form DNA, but this is rare within the cellular environment. The discovery of
topoisomerase DNA topoisomerases (or topoisomerases) are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues i ...
s and
gyrase DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-pol ...
s, enzymes that can change the linking number of circular nucleic acids and thus "unwind" and "rewind" the replicating bacterial chromosome, solved the topological objections to the B-form DNA helical structure. Indeed, in the absence of these topology-altering enzymes, small circular viral and plasmid DNA ''are'' inseparable supporting structure whose strands are topologically locked together. Non-helical DNA proposals have therefore dropped from mainstream science.


Confirmation of helical structure

Initially, there had been questions of whether the solved DNA structures were artefacts of the X-ray crystallography techniques used. However, the structure of DNA was subsequently confirmed in solution via gel electrophoretic methods and later via solution NMR and AFM indicating that the crystallography process did not distort it. The structure of DNA in complex with
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundamen ...
s,
helicase Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separatin ...
s, and numerous other
DNA binding protein DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, becaus ...
s also supported its biological relevance ''in vivo''.


References

{{Biomolecular structure DNA
Helices A helix () is a shape like a corkscrew or spiral staircase. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, ...
Biomolecules A biomolecule or biological molecule is a loosely used term for molecules present in organisms that are essential to one or more typically biological processes, such as cell division, morphogenesis, or development. Biomolecules include large ...
Structural bioinformatics Articles containing video clips Obsolete scientific theories